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1. Introduction and summary

An interesting example of the AdS/CFT duality [1] between gauge and string theory models

with reduced supersymmetry is provided by an exactly marginal deformation of N =

4 super Yang-Mills theory [2] and string theory on a deformed AdS5 × S5 background

suggested in [3]. The deformed models depend on a continuous complex parameter β,

and are often called β-deformed. If β ≡ γ is real the deformed string background can be

derived from AdS5 × S5 by using a TsT transformation which is a combination of a T-

duality on one angle variable, a shift of another isometry variable, followed by the second

T-duality on the first angle [3, 4]. Moreover, since S5 has three isometry directions, a chain

of TsT transformations can be used to construct a regular three-parameter deformation of

AdS5 × S5 dual to a non-supersymmetric deformation of N = 4 SYM [4]. The Lagrangian

of the γi-deformed gauge theory can be obtained from the undeformed one by replacing

the usual product by the associative ∗-product [3 – 5]. The resulting model is conformal in

the planar limit to any order of perturbation theory [6].

Another important property of a TsT transformation is that it preserves the classical

integrability of string theory on AdS5 × S5 [4]. In particular the Lax pair for strings on

AdS5 × S5 [7] and a TsT transformation can be used to find a Lax pair for strings on a

deformed background [4, 8]. Moreover, the Green-Schwarz action for strings on AdS5 × S5

is mapped under a TsT transformation to a string action on the γ-deformed background

providing a nontrivial example of non-supersymmetric Green-Schwarz action for strings on

RR backgrounds [8]. In fact in the Hamiltonian (first-order) formalism the Green-Schwarz

action for strings on the γ-deformed background is canonically equivalent to the action for

strings on AdS5 × S5 satisfying quasi-periodic or twisted boundary conditions [4, 8]. The

twists however are quite unusual because they depend on charges carried by a string and are

given by linear combinations of products of the deformation parameters and su(4) charges.

This also implies that in the light-cone gauges of [9, 10] the string dynamics on both the

γ-deformed background and AdS5 × S5 is described by the same Hamiltonian density. The

γ-dependence enters only through the twisted boundary conditions and the level-matching
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condition which is modified because a closed string in the deformed background in general

corresponds to an open string in AdS5 × S5. Correspondingly, in the decompactification

limit where one of the su(4) charges, say J , is sent to infinity while the string tension

and the deformation parameters are kept fixed the dependence of the light-cone Hamil-

tonian on the deformation parameters disappears because in this limit all physical fields

must vanish at the space infinity.1 As a result, if one considers the light-cone gauge-fixed

string sigma model off-shell, that is if one does not impose the level-matching condition

then the deformed string model is indistinguishable from the undeformed one, and they

share the same magnon dispersion relation [18], the su(2|2)⊕ su(2|2)-invariant world-sheet

S-matrix [19 – 21] and the dressing factor [22]–[25]. Therefore, the γ-dependence in the

decompactification limit is only due to the level-matching condition.

Thus, to see the dependence of the off-shell spectrum of the model on the deforma-

tion parameters one should analyze it for finite values of the su(4) charges. The leading

dependence can then be captured by the asymptotic Bethe ansatz which would differ from

the usual one [26] only by the twists reflecting the non-periodic boundary conditions for

finite J . This conclusion is also confirmed by the one-loop considerations in the γ-deformed

gauge theory [27, 28, 5] where it is shown that the one-loop integrability of N = 4 SYM [29]

is preserved by the deformation, and the corresponding one-loop Bethe ansatz involves the

same twists that appear in string theory [5]. In the asymptotic approximation the dis-

persion relation is not modified and the twists lead to a very mild modification of the

string spectrum which basically reduces to γ-dependent shifts of string mode numbers,

see [3, 17, 30] for some examples.

The asymptotic Bethe ansatz is not exact and for finite J one expects to find a non-

trivial γ-dependence already in the large string tension limit where classical string consider-

ations can be used. In particular, it is interesting to determine how the dispersion relation

for a giant magnon [31] depends on the deformation parameters. In the infinite J limit a

giant magnon is dual to a gauge theory spin chain magnon, and in the conformal gauge it

can be identified with an open string solution of the sigma model reduced to R× S2. The

end-points of the open string move along the equator of S2 parametrized by an angle φ,

and the momentum p carried by the dual spin chain magnon is equal to the difference in

the angle φ between the two end-points of the string [31]. On the other hand in a light-cone

gauge a giant magnon is identified with a world-sheet soliton and the momentum p is equal

to the world-sheet momentum pws of the soliton [32]. For finite J the equality between p

and pws holds only in the light-cone gauge t = τ , pφ = 1 [32].

In this paper we determine the leading γ-dependence of the dispersion relation for a

finite J giant magnon. We use the conformal gauge and the string sigma model reduced to

R× S3 which in the deformed case is the smallest consistent reduction due to the twisted

boundary conditions. Even for the three-parameter deformation the reduced model depends

1A γ-dependence remains in the pp-wave [11] and spinning string [12] limits because in these limits the

effective length J/
√

λ and the twists ∼ γiJk are kept fixed, and therefore the string sigma model is defined

on a circle with fields obeying quasi-periodic boundary conditions. The pp-wave limits of the deformed

backgrounds were discussed in [13 – 15], and the finite-gap integral equations [16] describing spinning strings

in the γ-deformed su(2) sector were derived in [17].

– 2 –



J
H
E
P
0
7
(
2
0
0
8
)
0
7
1

only on one of the parameters which we denote γ. Since there are two isometry angles φ1

and φ2 a solution of the reduced model can have two non-vanishing charges J1 and J2. A

giant magnon is then an open string solution of the model which carries only one charge

J ≡ J1. The momentum p of the magnon is correspondingly identified with the difference

in the angle φ1 between the two end-points of the open string because in the light-cone

gauge t = τ , pφ1 = 1 it is equal to the world-sheet momentum of a soliton. The second

angle φ2 satisfies a twisted boundary condition which can be found by using the general

formulas from [4]

∆φ2 = 2π(n2 − γJ) , n2 ∈ Z ,

where n2 is an integer winding number of the string in the second isometry direction of

the deformed sphere S3
γ . Collecting all the requirements together, we conclude that a γ-

deformed giant magnon can be identified with an open string in R × S3 satisfying the

following conditions

∆φ1 = p , ∆φ2 = 2π(n2 − γJ) , J1 = J , J2 = 0 .

We analyze the equations of motion and find that a solution exists only for one integer n2

which obeys the condition |n2 − γJ | ≤ 1
2 , and therefore there is only one deformation of a

giant magnon solution in R × S2. Then, the leading correction to the dispersion relation

in the large J limit has the following form

E − J = 2g sin
p

2

(
1 − 4

e2
sin2 p

2
cos Φ e

− J

sin p/2 + · · ·
)
, Φ =

2π(n2 − γJ)

23/2 cos3 p
4

,

where g =
√

λ
2π is the string tension, and J = J/g. The formula reduces in the limit γ → 0

(or Φ → 0) to the one obtained in [32]. In the large J limit the γ-dependence disappears

in agreement with the discussion above, and if γ is kept fixed then the winding number n2

goes to infinity too.

The deformed theory has less supersymmetry, and one expects that the energy of a

γ-deformed magnon would be higher than the energy of the undeformed one with the same

momentum and charge. It is indeed the case because cos Φ < 1.

It would be interesting to understand how to reproduce the dispersion relation by using

Lüscher’s approach [33]. This would generalize the computation performed in [34] to the

deformed case. The dispersion relation has a peculiar γ-dependence for finite J , and it is not

quite clear how such a dependence follows from the S-matrix approach. This would require

to generalize Lüscher’s formulas to the case of the nontrivial twisted boundary conditions.

Our consideration can be generalized to solutions carrying several spins, see [35 – 37]

for recent discussions of the undeformed model. It would be also interesting to compute

the one-loop quantum correction generalizing the considerations in [38, 39].

In section 2 we discuss possible giant magnon solutions in the deformed background

and explain how they can be mapped to open strings in AdS5 × S5. In section 3 we sketch

the derivation of the leading correction to the dispersion relation in the large J limit and

discuss its structure. The details of the derivation can be found in appendix.
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2. The γ-deformed giant magnon

The bosonic part of the Green-Schwarz action for strings on the γ-deformed AdS5 × S5

background [8] reduced to R× S5
γ can be written in the following form

S =−g
2

∫ r

−r
dσdτ

[
γαβ

(
−∂αt∂βt+∂αρi∂βρi+Gρ

2
i ∂αϕi∂βϕi+Gρ

2
1ρ

2
2ρ

2
3

(
γ̂i∂αϕi

)(
γ̂j∂βϕj

))

− 2Gǫαβ
(
γ̂3ρ

2
1ρ

2
2∂αϕ1∂βϕ2+γ̂1ρ

2
2ρ

2
3∂αϕ2∂βϕ3+γ̂2ρ

2
3ρ

2
1∂αϕ3∂βϕ1

) ]
. (2.1)

Here g = R2

α′ =
√

λ
2π is the string tension, and γαβ =

√
−hhαβ where hαβ is a world-sheet

metric with Minkowski signature. The function G is defined as follows

G−1 = 1 + γ̂2
3ρ

2
1ρ

2
2 + γ̂2

1ρ
2
2ρ

2
3 + γ̂2

2ρ
2
1ρ

2
3 ,

3∑

i=1

ρ2
i = 1 , (2.2)

and ϕi are the three isometry angles of the deformed S5
γ . The deformation parameters γ̂i are

kept fixed in the string sigma model perturbation theory, and are related to the parameters

γi which appear in the dual gauge theory as γ̂i = 2πgγi =
√
λγi. The standard AdS5 × S5

background is recovered after setting the deformation parameters γ̂i to zero. For equal

γ̂i = γ̂ this becomes the supersymmetric background of [3], and the deformation parameter

γ enters the N = 1 SYM superpotential as follows W = h tr(eiπγΦ1Φ2Φ3 − e−iπγΦ1Φ3Φ2).

The TsT transformations that map the AdS5 × S5 string theory to the γi-deformed

string theory allow one to relate the angle variables φi of S5 to the angle variables ϕi of

the γ-deformed geometry. The relations take their simplest form being expressed in terms

of the momenta pi, πi conjugate to φi, ϕi, respectively2 [4]

pi = πi , (2.3)

ρ2
i φ

′
i = ρ2

i (ϕ
′
i − 2πǫijkγjpk) , i = 1, 2, 3 , (2.4)

where in (2.4) we sum only in j, k. The relation (2.3) implies that the U(1) charges

Ji =
∫
dσpi are invariant under a TsT transformation.

Assuming that none of the “radii” ρi vanish on a string solution, we get

φ′i = ϕ′
i − 2πǫijkγjpk . (2.5)

Integrating eq. (2.5) and taking into account that

∆ϕi = ϕi(r) − ϕi(−r) = 2πni , ni ∈ Z (2.6)

for a closed string in the γ-deformed background, we obtain the twisted boundary condi-

tions for the angle variables φi of the original S5 space

∆φi = φi(r) − φi(−r) = 2π(ni − νi) , νi = ǫijkγjJk , Ji =

∫ r

−r
dσ pi. (2.7)

2Here we use definitions of momenta pi, which differ by a factor of 2π from those of [4], therefore we

have an extra 2π in (2.4).
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It is clear that if the twists νi are not integer then a closed string in the deformed

geometry is mapped to an open string in AdS5 × S5. A giant magnon solution in this

respect does not differ essentially from a closed string in AdS5×S5
γ. It corresponds to an

open string in the deformed geometry, and its image in AdS5 × S5 is an open string too.

The only difference is that not all of the winding numbers ni are integer for a giant magnon

solution. In fact one linear combination of the winding numbers should be identified with

the momentum p carried by the giant magnon.

To determine the linear combination we notice that in the infinite J ≡ J1+J2+J3 limit

the end-points of a giant magnon should move with the speed of light along a null geodesic

of the background [31]. In the undeformed case any geodesics is just a big circle of S5, and

the solution is described by a soliton of the string sigma model reduced to R × S2. The

momentum carried by the soliton is identified with the difference in the angle φ between the

two end-points of the string where φ parametrizes the equator of S2 [31]. In the light cone

gauge t = τ , pφ = 1 the momentum p is equal to the world-sheet momentum of the giant

magnon solution and because of that the identification can be also used for finite J [32].

In the γ-deformed background there are infinitely many inequivalent geodesics which

correspond to solutions of the Neumann-Rosochatius integrable system [30] (which also

describes multi-spin string solutions [40, 41]), and one should choose only those which give

the minimum energy satisfying the BPS condition E = J . These geodesics were described

in [30] where it was shown that for generic values of γi there are three BPS states which have

only one of the three charges Ji nonvanishing. Choosing for definiteness the nonvanishing

charge to be J1 = J , the BPS state corresponds to the geodesics parametrized by the angle

ϕ1 and having ρ1 = 1 , ρ2 = ρ3 = 0. An infinite J giant magnon with the end-points

moving along the geodesics is then a solution of the string sigma model reduced to R× S3
γ

where S3
γ is obtained from the deformed S5

γ by setting ρ3 = 0. The momentum p carried by

the soliton is identified with the difference ∆ϕ1 = ϕ1(r)− ϕ1(−r). In fact it is easy to see

that the TsT transformation maps the infinite J giant magnon solution of the undeformed

model to the γ-deformed giant magnon, and therefore the infinite J dispersion relation

is not modified, and has no γ dependence. For finite J however the dispersion relation

gets a nontrivial γ-dependence which we determine in the next section. This follows from

the fact that for the magnon solution J2 = J3 = 0, and therefore the twist ν1 = 0, and

the corresponding angles φ1 and φ2 of the undeformed S3 satisfy the following twisted

boundary conditions

∆φ1 = φ1(r) − φ1(−r) = p , ∆φ2 = φ2(r) − φ2(−r) = 2π(n2 − γJ) , (2.8)

where γ ≡ γ3 , J ≡ J1. As a result the dispersion relation for the finite J γ-deformed giant

magnon depends on p, J and δ ≡ 2π(n2 − γJ). To find the dispersion relation one can

either use the conformal gauge [31] or the light-cone gauge [32].

Let us also mention that in the case where the deformation parameters satisfy the

relations γi = c ki where c is any real number and ki are arbitrary integers, there is another

family of BPS states with the following charges [30]

Ji = k ki ∼ γi , (2.9)
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where (in quantum theory) k is any integer. In particular, in the supersymmetric case

γi = γ the BPS states are the states (J/3, J/3, J/3) with three equal charges. Since Ji ∼ γi

for these BPS states the twists νi vanish and both the γ-deformed giant magnon and its

TsT image satisfy the same twisted boundary conditions which take the simplest form in

terms of the following new angle variables and their conjugate momenta

ψ1 = k1φ1 + k2φ2 + k3φ3 , π1 =
p1 + p2 + p3

k1 + k2 + k3
, (2.10)

ψ2 = k1φ1 − (k1 + k3)φ2 + k3φ3 , π2 =
k2p1 − k1p2

k1(k1 + k2 + k3)
, (2.11)

ψ3 = k1φ1 + k2φ2 − (k1 + k2)φ3 , π3 =
k3p1 − k1p3

k1(k1 + k2 + k3)
. (2.12)

Then, the giant magnon solution with the charges satisfying (2.9) satisfies the following

boundary conditions

∆ψ1 = p , ∆ψ2 = 0 , ∆ψ3 = 0 . (2.13)

Since the boundary conditions do not depend on γi in the classical theory the dispersion re-

lation for the giant magnon does not depend on the deformation parameters either. A disad-

vantage of this giant magnon solution is that the corresponding Bethe ansatz is not known.

3. Finite J dispersion relation

To determine the dispersion relation we impose the conformal gauge γαβ = diag(−1, 1),

set t = τ , and use the following parametrization of S3

x2
i = 1 , x1 + ix2 = ρ1e

iφ1 , x3 + ix4 = ρ2e
iφ2 , ρ2

2 = 1 − ρ2
1 = χ . (3.1)

Then the sigma model action for strings on R× S3 takes the following form

S = −g
2

∫ r

−r
dσdτ

(
∂αχ∂

αχ

4χ(1 − χ)
+ (1 − χ)∂αφ1∂

αφ1 + χ∂αφ2∂
αφ2

)
.

and solutions of the equations of motion should also satisfy the Virasoro constraints

χ̇2 + χ′2

4χ(1 − χ)
+ (1 − χ)

(
φ̇2

1 + φ′21

)
+ χ

(
φ̇2

2 + φ′22

)
= 1 , (3.2)

χ̇χ′

4χ(1 − χ)
+ (1 − χ)φ̇1φ

′
1 + χφ̇2φ

′
2 = 0 . (3.3)

Since t = τ the range of σ is related to the space-time energy E of a solution as follows

2r =
E

g
≡ E . (3.4)

The two charges J1 ≡ J and J2 corresponding to shifts of φ1 and φ2 are

J = g

∫ r

−r
dσ (1 − χ) φ̇1 , J2 = g

∫ r

−r
dσ χ φ̇2 . (3.5)
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As was discussed in the previous section, the γ-deformed giant magnon solution has only

one nonvanishing charge J , and the angles φ1 and φ2 satisfy the following twisted boundary

conditions

∆φ1 = φ1(r) − φ1(−r) = p , ∆φ2 = φ2(r) − φ2(−r) = δ , (3.6)

where δ = 2π(n2 − γJ), γ = γ3 and n2 is the winding number in the ϕ2 direction of the

deformed S5
γ . It is worth mentioning that the dependence on γ and n2 comes only through

their linear combination δ which in fact plays the role of the deformation parameter.

The problem of finding a finite J giant magnon solution is thus basically equivalent to

the problem of finding a two-spin giant magnon solution discussed in appendix C of [32],

and can be solved by using a similar ansatz

φ1(σ, τ) = ωτ +
p

2r
(σ − vτ) + φ(σ − vτ) , (3.7)

φ2(σ, τ) = ντ +
δ

2r
(σ − vτ) + α(σ − vτ) , (3.8)

χ(σ, τ) = χ(σ − vτ) , (3.9)

where χ(σ), φ(σ) and α(σ) satisfy the periodic boundary conditions.

Substituting the ansatz into the equations of motion, integrating the equations for φ

and α once, and using the Virasoro constraint (3.2) , we get the following three equations

φ′ = f0 +
f1

1 − χ
, α′ = a0 +

a1

χ
, (3.10)

κ2 χ′2 = (χ− χneg)(χ− χmin)(χmax − χ) , (3.11)

where the constants in the equations are functions of ω, ν, v, p, δ, and χneg , χmin, χmax are

ordered as χneg ≤ 0 ≤ χ
min

< χmax . Moreover, giant magnon solutions exist only if χmax ≤ 1

and for these solutions χ
min

≤ χ ≤ χmax , see appendix for detail.

If the deformation parameter δ goes to 0 then χneg , a0 , a1 approach 0 too, and we

recover the equations of motion for a finite J undeformed giant magnon [32].

For any value of δ we can always choose the initial conditions so that χ(σ) is an

even function and φ(σ) and α(σ) are odd functions of σ, and since they are also periodic

functions, we can always look for a solution satisfying the following boundary conditions

χ(−r) = χ(r) = χmin , χ(0) = χmax , χ(−σ) = χ(σ) , (3.12)

φ(−r) = φ(0) = α(−r) = α(0) = 0 , φ(−σ) = −φ(σ) , α(−σ) = −α(σ) .

Due to the conditions we can restrict our attention to the half of the string from −r to 0,

and since χ is an increasing function on this interval we can also replace integrals over σ

by integrals over χ from χ
min

to χmax . Then a solution is completely determined by the

– 7 –
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following five equations which are analyzed in detail in appendix

Periodicity of φ : r f0 + f1

χmax∫

χ
min

dχ

(1 − χ)|χ′| = 0 ,

Periodicity of α : r a0 + a1

χmax∫

χ
min

dχ

χ|χ′| = 0 ,

Charge J ≡ J1

g
: −2r v f1 +

ω

1 − v2

χmax∫

χ
min

dχ
1 − χ

|χ′| = J ,

Charge J2 = 0 : −2r v a1 +
ν

1 − v2

χmax∫

χ
min

dχ
χ

|χ′| = 0 ,

Length of string:

∫ 0

−r
dσ = r =

χmax∫

χ
min

dχ

|χ′| ,

where all constants should be expressed in terms of the charge J , the soliton momentum

p and the deformation parameter δ.

The dispersion relation can be found in the large J limit as an expansion in e
− J

sin(p/2) ,

and up to the first correction it has the following form (0 ≤ p ≤ π)

E − J = 2g sin
p

2

(
1 − 4

e2
sin2 p

2
cos Φ e

− J

sin p/2 + · · ·
)
, (3.13)

where

Φ =
δ

23/2 cos3 p
4

=
2π(n2 − γJ)

23/2 cos3 p
4

. (3.14)

The dispersion relation in the γ-deformed model reduces in the limit δ → 0 (or Φ → 0) to

the one obtained in [32].

Some remarks are in order.

1. We see that in the limit J → ∞ the dispersion relation is independent of the defor-

mation parameter. This is contrary to papers [42, 43] where it was claimed that the

momentum is shifted by the deformation parameter 2πγ. As was discussed in the

previous section, 2πγ is identified with γ̂/g, and therefore the shift by γ cannot be

seen in classical theory in any case. It would be a one-loop effect, and the discus-

sion in the Introduction indicates that the momentum p is not shifted at one loop

at all but one should take into account that in quantum theory magnons carry other

charges of order one, and therefore p = ∆φ1 is not equal to pws = ∆ϕ1. According

to (2.7), if we have several (or just one) magnons with the total charges J2, J3 then

the momenta are related as p = pws + 2πγ3J2 − 2πγ2J3. If the state is physical

then the total world-sheet momentum pws should vanish leading to the condition

p = 2πγ3J2 − 2πγ2J3 (up to an integer multiple of 2π). This condition is equivalent

to the cyclicity constraint in the twisted Bethe ansatz [5].
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2. Since cos Φ < 1 the energy of a γ-deformed magnon is higher than the energy of

the undeformed one with the same momentum and charge. That is what one should

expect because the deformed theory has less supersymmetry.

3. The derivation of the dispersion relation performed in appendix shows that a giant

magnon solution exists if Φ satisfies the restriction

− π ≤ Φ ≤ π , (3.15)

and therefore if we require a solution to exist for all values of p from −π to π the

parameter δ must also satisfy the same restriction

− π ≤ δ ≤ π ⇐⇒ |n2 − γJ | ≤ 1

2
. (3.16)

This means that n2 is the integer closest to γJ . We see that for any γJ there is

only one integer n2 which satisfies the condition, and therefore there is only one

deformation of a giant magnon solution in R×S2. If the fractional part of γJ is less

than 1/2 then n2 is equal to the integer part of γJ , and if the fractional part of γJ

is greater than 1/2 then n2 is equal to the integer part of γJ + 1.

4. For small enough values of p however the first-order perturbation theory in e
− J

sin(p/2)

allows one to have two or three integers satisfying the restriction (3.15): n2 satisfy-

ing (3.16), and n2 ± 1. We expect that the latter possibilities will be ruled out at

higher orders of the perturbation theory. Anyway, according to (3.13) their energies

would be higher than the energy of the main solution.
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A. The motion on γ-deformed S3

The metric of AdS5 × S5, reduced to the R × S3 takes the following form:

ds2 = −dt2 +
dχ2

4χ(1 − χ)
+ (1 − χ)dφ2

1 + χdφ2
2. (A.1)

We will be looking for a solution of the equations of motion in the following form:

φ1(σ, τ) = ωτ +
p

2r
(σ − vτ) + φ(σ − vτ); (A.2)

φ2(σ, τ) = ντ +
δ

2r
(σ − vτ) + α(σ − vτ); (A.3)

χ(σ, τ) = χ(σ − vτ), (A.4)
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where δ = 2π(n2 − γJ1) and φ(σ − vτ), α(σ − vτ), χ(σ − vτ) satisfy periodic boundary

conditions.

Substituting the ansatz into the equations of motion, integrating the equations for φ

and α once, and using the Virasoro constraints (3.2) , we get the following equations:

φ′ = −
(

vω

1 − v2
+

p

2r

)
− vA1

1 − v2

1

1 − χ
(A.5)

α′ = −
(

vν

1 − v2
+

δ

2r

)
− vA2

1 − v2

1

χ
(A.6)

(1 − v2)2

4
χ′2 = κ0 + κ1χ+ κ2χ

2 + κ3χ
3 (A.7)

ωA1 + νA2 + 1 = 0. (A.8)

The constants κi are as follows:

κ0 = −v2A2
2 (A.9)

κ1 = 1 − ω2 + v2(1 +A2
2 −A2

1) (A.10)

κ2 = −1 − ν2 + 2ω2 − v2 (A.11)

κ3 = ν2 − ω2, (A.12)

Thus, in the notation of section 3 one may write

f0 = −
(

vω

1 − v2
+

p

2r

)
; f1 = − vA1

1 − v2
;

a0 = −
(

vν

1 − v2
+

δ

2r

)
; a1 = − vA2

1 − v2
;

κ =
1 − v2

2
√
ω2 − ν2

.

We also have the following expressions for the charges:3

J =
1

1 − v2


2rv2A1 + ω

r∫

−r

dσ (1 − χ)


 (A.13)

J2 =
1

1 − v2


2rv2A2 + ν

r∫

−r

dσ χ


 = 0. (A.14)

3From these expressions one can derive a linear relation between E,J ,J2:

1 − v2

E

„
J
ω

+
J2

ν

«
= 1 + v2

„
A1

ω
+

A2

ν

«
.
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Our equations can be written in the following form:

Periodicity of φ :
rvω

1 − v2
+
p

2
= − v A1

1 − v2

χmax∫

χ
min

dχ

(1 − χ)|χ′| ; (A.15)

Periodicity of α :
rvν

1 − v2
+ πδ = − v A2

1 − v2

χmax∫

χ
min

dχ

χ|χ′| ; (A.16)

Charge J ≡ J1

g
: J =

2

1 − v2


rA1v

2 + ω

χmax∫

χ
min

dχ
(1 − χ)

|χ′| )


 ; (A.17)

Charge J2 ≡ J2

g
= 0 : 0 = rv2A2 + ν

χmax∫

χ
min

dχ
χ

|χ′| , (A.18)

and the periodicity condition for χ which in this case takes the form

Length of string:

∫ 0

−r
dσ = r =

χmax∫

χ
min

dχ

|χ′| . (A.19)

We have called the real roots of the equation χneg , χmin
, χmax with the following ordering

χneg ≤ 0 ≤ χmin < χmax . Moreover, for the consistency of our approach we have to require

that χmin, χmax ∈ [0, 1), which will be justified by the solution. The fact that in the large

J expansion one of the roots is negative can be easily proven. Indeed, in the strict J → ∞
limit it follows from the work [32] that ω = 1, ν = 0, therefore the leading coefficient κ3

of the polynomial in the r.h.s. of (A.7) is negative, and this should remain true for large

J . The value of the r.h.s. of (A.7) at χ = 0 is κ0 ≤ 0. These two facts together imply

that there’s a negative root χneg . Note also that the value of the r.h.s. of (A.7) at χ = 1 is

−v2A2
1 < 0. This, together with the previous observation, implies that the two other roots

of the polynomial either are both < 0 or both ∈ [0, 1) or both > 1. We’re interested in the

case when they both lie in [0, 1). We consider (χneg , χmin
, χmax) as independent variables

that, together with all the previous variables (ν, ω, υ,A2), satisfy the following conditions

which simply mean that (χneg , χmin, χmax) are actually solutions of the cubic equation:

χneg + χ
min

+ χmax = −κ2

κ3
(A.20)

χnegχmin
+ χ

min
χmax + χnegχmax =

κ1

κ3
(A.21)

χnegχminχmax = −κ0

κ3
. (A.22)

We now switch to more convenient variables (ṽ, ǫ) instead of χ
min
, χmax (leaving χneg unal-
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tered). These two sets are connected in the following way:4

ǫ =
χ

min
− χneg

χmax − χneg

; (A.23)

ṽ2 =
1 − χmax

1 − χneg

; (A.24)

χneg = χneg . (A.25)

Next we write the expressions for all integrals entering our equations:

χmax∫

χ
min

dχ

χ|χ′| =
2κ

(1−ṽ2)3/2(1−χneg)
1/2(1+χneg

ev2

1−ev2 )
Π

(
1 − χneg

1+χneg
ev2

1−ev2

(1−ǫ); 1−ǫ
)

;

χmax∫

χ
min

dχ

(1 − χ)|χ′| = − 2κ

ṽ2(1 − χneg)
3/2

√
1 − ṽ2

Π

(
ṽ2 − 1

ṽ2
(1 − ǫ); 1 − ǫ

)
; (A.26)

χmax∫

χmin

dχ

|χ′| =
2κK(1 − ǫ)√

(1 − χneg)(1 − ṽ2)
;

χmax∫

χmin

dχχ

|χ′| = 2κ
χneg K(1 − ǫ) + (1 − χneg)(1 − ṽ2)E(1 − ǫ)√

(1 − χneg)(1 − ṽ2)
;

χmax∫

χmin

dχ (1 − χ)

|χ′| = −2κ
(χneg − 1)K(1 − ǫ) + (1 − χneg)(1 − ṽ2)E(1 − ǫ)√

(1 − χneg)(1 − ṽ2)
.

Thus, we have chosen the parameter ǫ rather than J as our expansion parameter. This

means that we have to make an expansion of the system of equations (A.15)–(A.19) in

ǫ and determine the corresponding coefficients in the expansion of various parameters,

comparing powers of ǫ and/or log ǫ which arise in this expansion. First of all, before solving

the equations, we get rid of the variable r by plugging the expression for r from (A.19)

into all other equations.

We make the following ansatz for our parameters:

v(ǫ) = v0(ǫ) + v1(ǫ)ǫ+O(ǫ2);

ṽ(ǫ) = ṽ0(ǫ) + ṽ1(ǫ)ǫ+O(ǫ2);

ω(ǫ) = ω0(ǫ) + ω1(ǫ)ǫ+O(ǫ2);

ν(ǫ) = ν1(ǫ)ǫ+O(ǫ2); (A.27)

A1(ǫ) = A1,0(ǫ) +A1,1(ǫ)ǫ+O(ǫ2);

A2(ǫ) = A2,1(ǫ)ǫ+O(ǫ2);

4The purpose of introducing the variable ǫ should be clear — then the moduli of all tori in our expressions

become 1− ǫ. The purpose of introducing ev is the following: the first parameter of the Π-function in (A.26)

becomes ev2
−1

ev2
(1 − ǫ), so that it is in direct correspondence with an analogous parameter in the work [32].
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χneg(ǫ) = χ1(ǫ)ǫ+O(ǫ2);

J (ǫ) = J0(ǫ) + J1(ǫ)ǫ+O(ǫ2),

where we assume that all ”coefficient” functions like v0(ǫ), v1(ǫ), ṽ0(ǫ), etc. are terminating

series in log ǫ (this is the reason why expansions (A.27) are justified). This assumption will

be proved aposteriori — by the solution that we will find.

We substitute (A.27) into our equations and expand these equations in ǫm, ignoring

terms with logarithms (that is, treating any combination

(
n∑

k=0

ak(log ǫ)
k

)
ǫm as just ǫm).

Then we obtain a system of equations for our ”coefficient” functions, which, when solved,

exhibits the property of these functions mentioned above — that is, they’re terminating

series in powers of log ǫ.

In the course of expanding the above written equations we need an expansion for

Π(1−α ǫ, 1− ǫ) as ǫ→ 0 (α fixed and 0 < α < 1). To find such an expansion we make use

of the following textbook identity for elliptic functions:

Π(1 − α ǫ, 1 − ǫ) =
1

α(α− 1)ǫ

[
α(1 − ǫ)K(1 − ǫ) − (1 − αǫ)Π

(
α− 1

α
; 1 − ǫ

)]
. (A.28)

The meaning of using this identity is that it explicitly singles out the 1
ǫ factor in the

expansion. Once we have written Π(1 − α ǫ, 1 − ǫ) in this form, we may use Mathematica

to generate the expansions of functions in the r.h.s. of (A.28):

Π(1−αǫ, 1−ǫ) =
arctan

(√
1
α − 1

)

√
1
α − 1α ǫ

+ (A.29)

+

(
2α
√

1
α − 1 arctan

(√
1
α − 1

)
+ (α− 1)(− log(ǫ/16) + 1)

)

4(α − 1)
+

+

(
8α2
√

1
α−1 arctan

(√
1
α−1

)
−(α−1)(2α+2(2α+1) log(ǫ/16)+3)

)
ǫ

64(α − 1)
+O

(
ǫ2
)

However, in our case α is not constant in ǫ but rather depends on ǫ in the following way:

α(ǫ) =

χneg (ǫ)

ǫ + (1 − χneg(ǫ))(1 − ṽ2(ǫ))

1 − ṽ2(ǫ)(1 − χneg(ǫ))
. (A.30)

According to our ansatz (A.27) α(ǫ) has a finite positive limit smaller than 1 as ǫ → 0 —

this is the only thing, which is important for our expansions to be justified. That is, we plug

the expansion of α in (powers and logarithms of) ǫ into the expansion for Π(1− α ǫ, 1− ǫ)

obtained at fixed α.

We also need to know the expansion of Π
(

ev2−1
ev2 (1 − ǫ); 1 − ǫ

)
as ǫ → 0. It was con-
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structed in the appendix of [32]. One has to use the identity

Π

(
v2−1

v2
(1−ǫ); 1−ǫ

)
= (A.31)

=
1

(1 − (1 − v2) ǫ)K(ǫ)

[
1

2
πv
√

(1 − v2) (1 − (1 − v2) ǫ)F
(
arcsin

(√
1 − v2

)
; ǫ
)

+

+K(1−ǫ)
((

1−
(
1−v2

)
ǫ
)
K(ǫ)−

(
1−v2

)
(1−ǫ)Π

(
v2ǫ

1−(1−v2) ǫ
; ǫ

))]

In the r.h.s. there’s only one function, which has an expansion that cannot be directly

obtained by Mathematica, and its expansion looks as follows:

Π

(
v2ǫ

1 − (1 − v2) ǫ
; ǫ

)
=
π

2
+

1

8

(
2πv2 + π

)
ǫ+

1

128
π
(
−8v4 + 44v2 + 9

)
ǫ2 +

+
1

512
π
(
16v6 − 72v4 + 206v2 + 25

)
ǫ3 +O

(
ǫ4
)
. (A.32)

Inverting the expansion

J(ǫ) = J0(ǫ) + J1(ǫ)ǫ+ o(ǫ), (A.33)

we obtain ǫ as a function of J , that is we return to our original expansion in the limit

J → ∞:

ǫ(J)=
16

e2
e
− J

sin
p
2

[
1− 8

e2
e
− J

sin
p
2

(
1−J 2 − 3 sin2 p

2

2 sin p
2

cos (Φ)− 1

2
J 2 cot2

p

2
cos Φ

)
+· · ·

]
. (A.34)

We now write out explicitly the expansions of the parameters entering the equations of

motion:

χneg(J ) = −16

e2
sin2 p

2
sin2 Φ

2
e
− J

sin(p/2) + · · · , (A.35)

χmax(J ) = sin2 p

2
+

8

e2
sin

p

2
cos2 p

2
cos Φ

(
3 sin

p

2
+ J

)
e
− J

sin(p/2) + · · · ,

χmin(J ) =
16

e2
sin2 p

2
cos2 Φ

2
e
− J

sin(p/2) + · · · ,

v(J ) = cos
p

2
− 4

e2
sin

p

2
cos

p

2
cos Φ

(
sin

p

2
+ J

)
e
− J

sin(p/2) + · · · ,

ω(J ) = 1 +
8

e2
sin2 p

2
cos Φ e

− J

sin(p/2) + · · · ,

ν(J ) =
4

e2
cos

p

2
sin Φ

(
2 sin

p

2
+ J

)
e
− J

sin(p/2) + · · · ,

f0(J ) = − p

E − cos p
2

sin2 p
2

+
cos Φ sin p

(
2J cos p + 6J − sin p

2 + 3 sin 3p
2

)

2e2 sin4 p
2

e
− J

sin(p/2) + · · · ,

f1(J ) =
cos p

2

sin2 p
2

+
cos Φ sin p

(
sin 3p

2 − 2J (cos p + 3) − 11 sin p
2

)

2e2 sin4 p
2

e
− J

sin(p/2) + · · · ,

a0(J ) = − δ

E − 4

e2

(
J + 2 sin

p

2

)
sin Φ cot2

p

2
e
− J

sin(p/2) + · · · ,

a1(J ) =
8

e2
sin

p

2
sinΦ e

− J

sin(p/2) + · · · ,
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where

Φ =
δ

23/2 cos3(p
4 )
, (A.36)

and the solution exists for all p ∈ [−π;π] (if and) only if

|δ| = |2π(n2 − γJ)| ≤ π. (A.37)

This means that for the undeformed AdS5 ×S5, that is γ = 0, the only possible choice

is n2 = 0, or δ = 0. In this case all formulas reduce to what was found in [32].

To obtain the dispersion relation one should expand (A.19) with respect to ǫ and then

substitute the expansion (A.34) of ǫ in terms of J . The dispersion relation with the first

correction has the following form:

E − J =

√
λ

π
sin

p

2

(
1 − 4

e2
sin2 p

2
cos Φ e

− J

sin p/2 + · · ·
)

; (A.38)

Φ =
δ

23/2 cos3 p
4

; |δ| = |2π(n2 − γJ)| ≤ π.
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fluctuations around the giant magnon, JHEP 06 (2008) 036 [arXiv:0801.4463].

[40] G. Arutyunov, S. Frolov, J. Russo and A.A. Tseytlin, Spinning strings in AdS5 × S5 and

integrable systems, Nucl. Phys. B 671 (2003) 3 [hep-th/0307191].

[41] G. Arutyunov, J. Russo and A.A. Tseytlin, Spinning strings in AdS5 × S5: new integrable

system relations, Phys. Rev. D 69 (2004) 086009 [hep-th/0311004].

[42] C.-S. Chu, G. Georgiou and V.V. Khoze, Magnons, classical strings and β-deformations,

JHEP 11 (2006) 093 [hep-th/0606220].

[43] N.P. Bobev and R.C. Rashkov, Multispin giant magnons, Phys. Rev. D 74 (2006) 046011

[hep-th/0607018].

– 17 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB778%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB778%2C1
http://arxiv.org/abs/hep-th/0606126
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C104%2C177
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C126008
http://arxiv.org/abs/0708.2208
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB800%2C349
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB800%2C349
http://arxiv.org/abs/0801.0747
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB801%2C97
http://arxiv.org/abs/0801.2064
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA41%2C285401
http://arxiv.org/abs/0803.2324
http://arxiv.org/abs/0801.3671
http://jhep.sissa.it/stdsearch?paper=06%282008%29036
http://arxiv.org/abs/0801.4463
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB671%2C3
http://arxiv.org/abs/hep-th/0307191
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C086009
http://arxiv.org/abs/hep-th/0311004
http://jhep.sissa.it/stdsearch?paper=11%282006%29093
http://arxiv.org/abs/hep-th/0606220
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C046011
http://arxiv.org/abs/hep-th/0607018

